• 这里公布的是太原理工大学智能光学实验室研究CMOS暗电流建模和坏像素识别方法所对应样例代码,代码已经应用于一个商用卫星数据处理任务中,并且展示了比较好的结果。
  • 这里公布的是太原理工大学智能光学实验室研究CMOS暗电流建模和坏像素识别方法所对应样例代码,代码已经应用于一个商用卫星数据处理任务中,并且展示了比较好的结果。
  • 程主要内容:⑴射电天文学;⑵射电干涉基本原理;⑶甚长基线干涉与高精度天体测量及其应用;⑷脉冲星、脉冲星PTA探测纳赫兹引力波;⑸快速射电暴;⑹暗物质粒子射电探测;⑺基于SKA探路者科学研究;⑻高能粒子低频射电观测 ...
    ;⑼SKA成像处理;⑽天文数据处理与分析。
  • ; 第三层级为更进阶数据产品,涉及该层级数据竞赛将致力于科学目标的研究,以及相关算法开发;而第四层级,则针对最终科学成果,也是所有观测和分析最终目标。
    此次所提供竞赛数据共包含代表SKA中频望远镜3个波段、代表3种望远镜观测模式3种积分时间的总共9个FITS图像,每个图像大小达4GB, 结合各团队分析结果,单个图像中探测出天体数量最多可达几十万颗 ...
    团队首先对所有竞赛数据开展统计分析,了解数据结构,天体群组特征,确定用于数据处理输入参数范围,进而基于针对SKA不同先导项目而开发天体搜索算法对图像进行了先期测试,经过对结果准确度与计算效率评估 ...
    ,选取表现较好的算法结果进行交叉验证,得到准确率最佳算法完成对所有图像天体搜索与天体形态拟合。
    而面对如此从庞大数据处理,普通计算机无法全部完成,为此,团队借助上海天文台SKA区域中心原型机系统完成了不同环节数据处理工作。
  • 该数据是我们在论文《用COLA快速生成模拟星系表》中提到SDSS DR12星系模拟星表,产生快速模拟星表技术是基于以下几个:Code for Anisotropies in the Microwave ...
  • 这是我们论文“用COLA快速生成模拟星系目录”支持数据,包括模拟目录和merger-tree输出晕文件。
  • 如今这个算法在天文学各个分支都有广泛应用。 星系团 星系团既是大尺度结构结点枢纽,也是星系形成和演化重要场所。如何搜寻星系团,证认星系团内部团成员一直是星系团研究重要内容。
    超星系团 超星系团由多个星系团或星系群组大质量天体,是宇宙中已知最大尺度结构之一。
    传统成员识别方法通常假定星团成员有相同运动学信息和相同演化趋势。 层次聚类方法不需要事先假设,这对于探索星团边界有很大优势。
    只利用恒星运动学信息,以投影束缚能为度量进行聚类,可以将疏散双星团结构区分开来。 图3 左图为英仙双星团树状图.右图为算法给出两个子团成员空间分布.
    随着新一代天文设备陆续建成,待分析数据量大幅增长,层次聚类算法也将会在天文学研究中发挥更大作用。
  • 12月26日,我们将迎来21世纪10年代最后一场盛大天文奇观——日环食。在这一天,月球将跑到地球“前面”,投下数千公里“月球阴影”。   日食产生的原因是什么呢? ...
    日食原理图   此次日环食环食带从沙特阿拉伯开始,经过卡塔尔、阿拉伯联合酋长国、阿曼、阿拉伯海、印度、斯里兰卡、印度尼西亚、马来西亚、苏拉威西海,在太平洋西部结束。
    虽然小编无法帮你实现说走就走愿望,但在万维望远镜平台上,你可以足不出户任意“点播”所有可观测地点日食景象。
    为了让大家更好地了解这次日环食,我们也为您准备了一份特殊礼物。 华南师范大学附属中学俞姿妍同学在吕鸿斌老师指导下,利用万维望远镜平台制作了一部非常精彩宇宙漫游。
    不仅介绍了日食在中国古代文献中的记载与日食形成原理,而且还模拟出了在最佳观赏地点才能看到日环食真容。下面就请大家一睹为快吧!
  • 这是“Fast generation of mock galaxy catalogue with COLA”一文中所用到数据集,包括BOSS CMASS NGC星系模拟星表和暗物质粒子模拟直接输出暗物质晕表 ...
  • 、太原理工大学贾鹏教授团队,以及国家天文科学数据中心中国虚拟天文台团队协作开发。
    星系迷宫项目(GALAXYMAZE)项目于2023年末全新上线,该项目基于真实天文科学数据 DESI Legacy Surveys 项目中的亮星系巡天数据策划并实施,项目研发由来自国家天文台李楠研究员团队、太原理工大学贾鹏教授团队 ...
    星系迷宫项目旨在让公众以最小的学习成本、结合直观互动操作、基于全新设计星系分类决策树对百万甚至千万量级星系图像进行图像分类。
    该平台由中国科学院国家天文台副研究员李广伟组织协调,太原理工大学智能光学成像实验室贾鹏团队开发,国家天文科学数据中心提供数据和网络支持。
    虽然我们同在一片天空下,因各地文化风俗差异,人们对于星空也产生了千差万别的解读,广泛流传中国民间星座充满博物学气质,有着各种各样神奇名字,希望这个项目记述、传播,让这些动人传说能够在我们手中代代传承 ...
  • 今年双十一,上热搜不仅有买买买,还有令天文爱好者大为振奋天象奇观——水星凌日。
    水星凌日(Transit of Mercury)是一种天文现象,其原理与日食相似。当水星运行至地球和太阳之间,如果三者能够连成直线,便会产生“水星凌日”现象。
    但由于水星和地球公转轨道存在一定夹角,水星、太阳、地球很少会排列在一条直线上。因此,只有水星处于二者运行轨道两个交点附近,而日水地三者又恰好排成一条直线时,这一奇观才会出现。
    水星凌日原理示意图   我怎么没看到呢? 今年在水星凌日发生时,中国恰好已经入夜,当然看不到啦!
    别急,在万维望远镜平台上即可回顾它的全过程。凌源市第二高级中学梁雷老师就利用相关数据将本次“水星凌日”盛况进行了“神还原”。
  • 全民科学目的是利用公众参与来收集数据和解决实际问题,同时提高公众对科学理解和兴趣。国家天文科学中心致力于提供这样平台。
    、太原理工大学贾鹏教授团队,以及国家天文科学数据中心中国虚拟天文台团队协作开发。
    9月 项目简介:星系迷宫项目(GALAXYMAZE)项目基于真实天文科学数据 DESI Legacy Surveys 项目中的 亮星系巡天数据策划并实施,项目研发由来自国家天文台李楠研究员团队、太原理工大学贾鹏教授团队 ...
    星系迷宫项目旨在让公众以最小的学习成本、结合直观互动操作、基于全新设计星系分类决策树对百万甚至千万量级星系图像进行图像分类。
    该平台由中国科学院国家天文台副研究员李广伟组织协调,太原理工大学智能光学成像实验室贾鹏团队开发,国家天文科学数据中心提供数据和网络支持。恰逢近期英仙座流星雨造访地球之际,该系统隆重上线。
  • 近日在华南师大附中校园科技节上,吕鸿斌老师创作万维宇宙漫游影片《GPS那些事》举行了首映。影片一经播出,在全校师生中引起了热议和好评,成为万维望远镜在中小学天文学教学活动中的又一精彩实例。
    本片通过万维望远镜、Stellarium、3DS MAX 等软件还原了GPS卫星真实轨道信息,详细介绍了GPS组成系统及其发展最新动态,用3D动画形式解密GPS定位原理
    万维望远镜可以加载用户提供真实卫星轨道数据,实现对卫星轨道运动可视化操作,为影片中的科学说明起到画龙点睛作用,同时用户还可以基于万维望远镜拥有丰富地球数据建模并对地球球面进行动态演示。
    在该校万维互动式数字天象厅内首映后,激发了新生学习天文地理知识热情。 建设于2016年万维互动式数字天象厅在本次科技节中起到了很好的支撑作用,为华南师大附中全校师生献上星空专场。
    作为天象厅核心平台,万维望远镜系统模拟了活动当天以及各个季节星空,并播放了球幕电影《星空音乐会》《黑洞》等,使得学生们可以立体地感受到宇宙魅力。 点击片名观看《GPS那些事》 ...
  • 当代天文学是典型数据密集型科学研究领域。天文大数据构成数字宇宙为天文学家提供了广阔挖掘空间,同时也带来很多技术挑战。要想在浩瀚数字宇宙中精准淘金,信息技术与天文学深度交叉成为必然。
    2008年,他毕业于南京理工大学光电信息工程专业,2013年在南京大学天文系获得博士学位,同年进入太原理工大学物理与光电工程学院工作。
    图1:贾鹏在中国天文学会信息化工作委员会2020年工作会议上做报告 2013年博士毕业之后,贾鹏回到了他家乡原理工大学。
    他将天文数据作为数字图像处理、科技文献检索及利用等课程背景资料和材料,设计了”太原理工大学数据标注平台“等校内教学服务网站,组织学生开展教学科研结合早期训练,开拓了学生的眼界 ...
    另一方面要提升现有智能应用算法性能,降低人工干预和标记数据需求,同时提升算法工程化水平。在数据上云基础上,将算法转变为服务,为全民普及科学研究做出贡献。
  • 这个文件包含本文使用43个GWAC光变曲线和4个耀发动画。也包含TESS和K2中耀发和周期数据。
  • 恒星距离是天体物理学基础支柱,这是一个包含14.7亿颗恒星几何距离星表,其中92%的是测光几何距离。来自盖亚14.7亿恒星视差数据发布对距离测量非常有帮助。
    尽管盖亚视差数据精度很高,但这些恒星中的大多数都很遥远或微弱,因此它们视差不确定性很大,不能简单地用视差倒数来计算距离。
    此数据集中,采用一种概率方法来估计恒星两种类型距离,即,仅使用EDR3视差几何距离以及使用EDR3视差、G星等和BP-RP颜色测光几何距离。
    这两种类型估算都涉及方向相关先验论,该先验论是根据盖亚所看到银河系恒星3D分布、颜色和星等复杂模型构建,即同时考虑星际消光和盖亚选择函数。
    对模拟数据测试,以及对独立估计和疏散星团验证,表明我们估算距离在几个kpc内是可靠的。
  • 该压缩文件包含了对XTE J1810-197所有194 个 2.25/8.60 GHz 同步观测历元".FTp "扩展名文件,这些文件折叠了时间和频率。
    此外,我们还单独提供了文章中绘图所用四个观测数据(MJD 58502、MJD 59075、MJD 59096 和 MJD 59209)后缀名为'.Fp'文件,这些文件对频率进行了折叠。
    双频接收机是一个低温冷却双极化接收机,频率覆盖范围分别为2.20-2.30和8.20-9.00 GHz。
    总带宽被DIBAS分为宽度为1 MHz(2.25 GHz)和 2 MHz(8.60 GHz)子通道,以消除频散效应和射频干扰(radio-frequency interferences,简称RFIs) ...
    我们观测采用了非相干去色散和在线折叠观测模式。每个自转周期被划分为 1024 个相位,并以 30 秒子积分长度进行折叠。观测数据以 8 位 PSRFITS 格式写出。
  • 压缩文件中包含了我们所有194次双频观测fits文件,这些文件都折叠了时间和频率。
    另外,我们还单独提供了文章中绘图所用四次观测(MJD 58502, MJD 59075, MJD 59096 and MJD 59209)fits文件,这些文件折叠了频率。
  • 压缩文件中包含了我们所有194次双频观测fits文件,这些文件都折叠了时间和频率。
    另外,我们还单独提供了文章中绘图所用四次观测(MJD 58502, MJD 59075, MJD 59096 and MJD 59209)fits文件,这些文件折叠了频率。
  • 第1列是目标源LAMOST光谱编号,第2-3列是duplicate SP-sample中恒星编号和重复观测次数,第4-5列是LAMOST 1D pipeline所得恒星光谱型及LAMOST g波段信噪比 ...
    ,第6-10列是每个参数改正因子(k)。
  •  
我们使用cookies为您提供更好的体验。继续使用本网站,即表示您同意按照我们的Cookie 政策使用cookie。
接受