• 申请用户遍布国内及澳门和台湾的天文研究机构及高校,主要有国家天文台、云南天文台、紫金山天文台、上海天文台、北京大学、清华大学、中国科学技术大学、北京师范大学、澳门科技大学、台湾中央大学等机构;此外还有国外用户 ...
  • 经过全世界业余和专业天文学家一周的后续观测,国际天文学联合会(IAU)的小行星中心计算出了它的初始轨道,并发现它是来自太阳系外的星际天体——这是目前已知的第二个经过太阳系的宇宙旅行者。     ...
    双子望远镜拍摄的星际旅行者2I/Borisov图片。
    在第一个系外访客1I/'Oumuamua(奥陌陌)发现仅仅两年之后,2I/Borisov的发现说明这种星际天体的数量可能很多。
    以此次事件为背景,梁雷老师联合凌源中学的冯宇静老师共同制作了科普漫游《星际旅客 2i/Borisov》向大家介绍了这颗星际彗星。       您可以点击这里来欣赏这部漫游作品哦!
  • 申请用户遍布国内天文研究机构及高校,主要有:国家天文台、云南天文台、紫金山天文台、上海天文台、北京大学、清华大学、中国科技大学、南京大学、北京师范大学、南京师范大学、国家授时中心、广州大学、中国极地研究中心、贵州大学、澳门科技大学 ...
  • 自10月8日以来,会议网站共收到来自中国科学院天文台站系统、高校、中学、科技场馆、IT科研院所,以及香港、澳门和部队单位等近40个单位,150多名人员的注册信息。
  • 现在,我们诚挚邀请您踏上星际征程,加入国家天文科学数据中心最新推出的异常天体查找项目——星系马戏团项目(GALAXYCIRCUS),与科学家们一同发现潜藏在宇宙深处的秘密。
    注册与登录:进入网站首页,点击右侧个人中心。如果您是新用户,请点击注册按钮并提供所需的信息完成注册过程。如果您已经有帐户,请点击登录按钮并输入您的用户名和密码来访问您的帐户。
    图3 登录界面 2. 学习如何操作:点击主页导航栏“教程”按钮,您可以了解该项目的基本操作方法。
  • 红外暗云是一种超低温(绝对零度以上10-30度)、冷暗致密的星际物质聚合体,是恒星形成和星际化学演化的主要场所,包含了这些过程的最重要原初状态信息。
    注1:氨分子(NH3)被认为是星际介质的灵敏温度计。
  • 星际浩瀚,物质多元:星际气体(无论离子、原子、分子)各具特色,星际尘埃(不分硅、碳、冰)兼领风骚;星际辐射长波高频,含磁带电,振转并行。
    当此时也,从事星际物理与化学或相关学科研究的国内队伍规模加大,成果倍出,加强交流和合作已成必然之势。
    继长沙(2009)、大连(2014)、北京(2015)、成都(2016)、湘潭(2017)、昆明(2018)、淮北(2019)之后,我们定于2021年8月16 - 20日在广东省珠海市继续举办以“星际物理与化学 ...
  • 近期,利用机器学习算法,国家天文台白宇副研究员、刘继峰研究员等利用LAMOST光谱数据,给出了Gaia DR2数据中1.3亿颗恒星的星际消光,研究成果已经被《天文学杂志》(AJ)接收并即将发表。
    在当代天体物理学,科学技术的进步带来的天文大数据,极大拓展了人类对于银河系的认知,然而,其中最大阻碍之一是,充斥着银河系的星际气体和尘埃。
    国际上,已经有多个科研团队,以测光数据为基础,试图给出这些天体的星际消光信息,但是,测光学能够提供的数据量十分有限,得到的结果通常存在偏差。
    利用恒星大气模型给出这些恒星的本征颜色,与Gaia数据库比较,得到星际消光。采用Gaia内部参数训练回归器,并对1.3亿颗恒星的星际消光给出预测。
  • 该工作利用LAMOST数百万颗恒星,基于精确测量的多波段消光得到了追踪星际尘埃性质的关键参量,这为理解不同星际环境中尘埃的特性及其演化提供了新的视角,为实现精确的消光校正也具有重要意义。
    消光规律,又称消光曲线,是尘埃消光随波长变化的函数,而总的消光量和选择性消光量之间的比值Rv是反映星际尘埃性质的关键参量,它既在很大程度上决定了消光曲线的形状,又反映着尘埃的颗粒大小、化学组成等性质(图 ...
    此外,他们还研究了 Rv 与其它星际参数(如尘埃温度Tdust,尘埃发射谱指数β,中性氢柱密度NHI、分子氢柱密度NH2以及它们的比值,气尘比GDR)之间的相关性(图4),发现这些关系随消光大小的变化而变化 ...
    ,这为了解不同星际环境中尘埃的不同特性提供了新的认识,也为实现精确的消光校正奠定了基础。
    图 4 Rv与各种星际介质参数之间的相关性。
  • 星际浩瀚,物质多元:星际气体(无论离子、原子、分子)各具特色,星际尘埃(不分硅、碳、冰)兼领风骚;星际辐射长波高频,含磁带电,振转并行。
    当此时也,从事星际物理与化学或相关学科研究的国内队伍规模加大,成果倍出,加强交流和合作已成必然之势。
    2009)、大连(2014)、北京(2015)、成都(2016)、湘潭(2017)、昆明(2018)、淮北(2019)和珠海(2021)之后,我们定于2022年8月12-16日在湖北省宜昌市继续举办以“星际物理与化学 ...
  • 、中国科学院上海天文台、中国科学院云南天文台、中国科学院新疆天文台、中国科学院高能物理研究所、中国极地研究中心、清华大学、北京大学、中国科学技术大学、厦门大学、南京大学、广州大学、天津大学、香港大学、澳门科技大学 ...
  • 值得注意的是,本次年会是第一次同时有来自台湾、香港、澳门和大陆,即两岸四地天文科研及科普工作者参加的会议。本届学术年会由国家天文台主办,景德镇学院承办。     ...
  • 赵赫等人准确测量了其中15个遗迹的距离,获知了7个遗迹的距离范围,并研究了超新星爆发对星际尘埃的影响。论文链接:点击这里。
    星际尘埃作为星系的重要组成部分,广泛参与了星系中各种物理化学过程,并在其中扮演着重要的角色。
    其中绝大多数遗迹,两种成分的平均大小是不同的,硅酸盐颗粒的平均尺寸要明显大于石墨颗粒的平均尺寸;而在弥散星际介质和玫瑰星云中,硅酸盐和石墨有着相近的平均尺寸,并且与遗迹中石墨的平均尺寸也很接近。
    但随着光谱巡天的发展,这一方法将拥有更广阔的应用前景,接下来,包括超新星遗迹在内的不同星际环境下更多更准确的尘埃性质将逐步被揭示。
    黑色虚线代表了弥散星际介质中消光随距离的变化。 图(c):IC 443的消光曲线,包含了从光学到近红外10波段的数据,及尘埃模型的拟合。
  • 该研究成果表明离子射电复合线有望成为测量元素丰度的常规手段,对精确测定星际空间,特别是高度消光区的元素丰度具有重要意义。
    电离气体是星际空间中最为广泛分布的气体成分。对电离气体不同元素发射线的观测是测量宇宙元素丰度最重要的手段。长期以来,对电离气体丰度的测量大多基于光学(及红外)谱线观测。
    在天文领域,比氦更重的元素被称为金属元素,它们主导了星际尘埃与星际有机分子的形成。金属原子的射电复合线往往会被与之具有相近频率的氦原子射电复合线掩盖,这使得金属原子的射电复合线很难被探测到。
    至此,研究人员确信探测到了来自星际空间的离子射电复合线。
    由此,研究人员确信首次探测到了来自星际空间的碳氧离子射电复合线。 文章第一作者、通讯作者刘训川博士主持了天马望远镜谱线搜寻项目。
  • 星际尘埃主要产生于恒星演化的后期阶段,它们吸收紫外和可见光波段的能量(形成黑云),并在红外波段发射。尘埃不仅有利于星际中的气体冷却以形成一下代恒星,更可以说是行星以及生命形成的基础“砖块”。
    虽然星际尘埃的质量一般占据星系总质量的千分之一还不到, 但是其在星系、恒星以及行星系统的形成和演化当中都起着关键性作用。
  • star formation,2660篇) 数值模拟(numerical simulation,2498篇) 暗物质(dark matter,2488篇) 银河系(Milky Way,2349篇) 星际介质 ...
    microwave background, 676篇) 暗物质(dark matter, 674篇) 功率谱(power spectrum, 602篇) 黑洞(black hole, 582篇) 星际介质 ...
    排名前十的缩略词分别是: 活动星系核(AGN,1589篇) 能谱分布(SED,1358篇) 信噪比(S/N,1320篇) 宇宙微波背景辐射(CMB,1256篇) 星际介质(ISM,1072 ...
  • 大质量恒星快速演化过程中伴生的星际介质反馈及元素核合成过程,推动了其所在星团、甚至整个星系结构和化学的演化。
    微波和毫米波的脉泽是一种类似于光学激光的非热辐射,天文观测发现它们通常与大质量恒星形成区成协,这些脉泽来自致密辐射区域(典型尺度在几到几十个天文单位的气体团块),且亮温度远高于热气体,是研究大质量年轻星周围(1000 天文单位)范围内气体运动和星际介质性质等的有效探针 ...
    该团队利用上海65米射电望远镜(天马望远镜)首次在星际空间探测到异氰酸(HNCO)、重水(HDO)和甲醇同位素(13CH3OH)三种新的分子脉泽,并揭示它们正在示踪(大质量恒星形成过程中的)由引力不稳定性导致的星周盘碎裂产生的旋臂吸积流及间歇吸积现象 ...
  • 刘超,中国科学院国家天文台研究员,主要从事银河系的结构与演化、星系动力学、星际消光、恒星物理等研究,2008年毕业于中国虚拟天文台团队。
  • 申请网址为http://astrocloud.china-vo.org/,按网站提示成功注册并登录系统后(已有账号可直接登录),在“我的申请”-“申请列表”下方,下载相应的“申请指南”,其中包含了本次申请所需的 ...
  • 为正在进行的大型项目提供补充观测设施   开放申请望远镜及观测时间   申请指南      该项目申报方式为在线申报,详细信息可登录官方网站 ...
    中科院内人员可使用邮箱及密码直接登录,院外人员需注册账号后再按步骤填报。            中国虚拟天文台团队为TAP项目提供全面技术支持。
  •  
我们使用cookies为您提供更好的体验。继续使用本网站,即表示您同意按照我们的Cookie 政策使用cookie。
接受