• 5、大赛组委会对恶意票保留处理权力。   即日起登陆中国数字科技馆大赛官方投票页面即可投票。 https://www.cdstm.cn/subjects/observatory ...
  • 9月5日晚,在中科院云南天文台及清华大学专业天文工作者的帮助下(1摩尔),利用云台丽江站2.4米望远镜抓住仅有的半小时晴天机会,及时拍摄了该候选体的光谱,分析并认证为 Ia-91T-like 类型。
  • 谭瀚杰在排除了已知目标、小行星、变星后,NEXT也完成了补拍,进一步排除了噪等可能。
    虽然如此,测光结果只是说明AT 2021ypn在Hα波段的辐射非常强烈,在这一上很像新星,还不能作为证认的最终证据。好在14日上午,A. Vinokurov和A.
    (使用基于顶的快速约减数据处理流程。
    视频小程序,轻两下取消在看,轻两下取消在看 ...
  • 好几位国内外友人大我的胸卡并合影留念,因为它的编号是“0001”。殊不知那届大会的网站和注册系统是我一手搭建管理的,作为超级管理员,“0001”的编号当然非我莫属啊。
    J 北京IAU大会信息保障组合影   北京IAU大会上的万维望远镜展台   今日看   8月20日大会日程   8月20日是大会第一天,日程相对简单 ...
    在维也纳时间下午3半的时候是一个关于S2星和银河系中心黑洞的专题讨论。本届大会开幕式将于下午4半正式开始。有哪些重要人物出场,让我们拭目以待。 前方记者/图文:崔辰州 ...
  • 13.7米毫米波射电望远镜课题观测采用单观测模式观测的数据,每条谱线一个fits文件,数据库的表中一条记录对应一个文件的头信息。2003年至今共观测323万多条谱线。
  • 面对天文领域日益增长的大数据集和大数据流,迫切需要相应的先进分析和可视化方法。 光谱分类识别一直是天文学家研究的基础问题,也是LAMOST巡天计划的一项重要任务。
    专家可能会连续遇到不同类别的光谱,因此不得不频繁地切换认知焦,导致完成分类所需的时间和认知资源大大增加。另一方面,在检查单条光谱时,专家需要根据光谱的整体形状识别相关谱线。
    这也是实现精准光谱分析的难。 为了解决这些挑战、进一步提升光谱分类的效率,我们提出可视分析系统SpectrumVA。我们将检查看作以红移和谱线为参数的视觉参数空间分析过程。
    专家一方面可以在光谱中选几个显著的特征,系统会自动识别其中的谱线和对应的红移。另一方面,系统展示不同红移下所有谱线的整体重要性。整体重要性较高的红移可能对应真实红移。
    推广界面(图4)由选择界面更新得到,它们的区别主要在于界面的关注由要检查的光谱切换为之前已检查光谱的相似光谱。因此,位于选择界面右侧、用于选择红移和谱线的视图被替换为相似光谱视图。
  • 涵盖了业余天文望远镜能看到的几乎所有有观测价值的月面地标,包括: 655个主环形坑,348个卫星坑,19个月海,17个月湖,10个月湾,3个月沼,9个海角,103条月溪,8个月谷,43条山脉或山峰,37条山脊,8个峭壁,9个坑链、1个反照率异常和 ...
    24个飞船着陆地标。
    1条山脊:加图山脊 11个着陆:月球16号、17号、20号、21号、23号和24号,勘测者1号、3号、5号、6号和7号。 2.
    为保证印后的清晰度,将着陆文字的颜色改为紫色白边,并在地图右下角加上了颜色说明。 月面地图可以用来做什么? 1.
  • 国家天文台兴隆观测基地于2019年底遴选出了2.16米望远镜、85厘米望远镜观测重课题。
    为继续保障国家天文台兴隆观测基地2.16米望远镜和85厘米望远镜的高效运行和高质量产出,现启动新一轮2.16米望远镜、85厘米望远镜观测重课题申请和遴选工作。
    对于入选的重课题,兴隆观测基地将在观测时间分配等方面给予优先保障。本轮观测重课题支持期原则上为3年,即2023年下半年—2026年上半年。
    如您有意申请重课题,请于2023年6月16日15:00前填写好申请书(具体通知可在这里查看),并保存为pdf文件发送至邮箱:xinglong@nao.cas.cn,建议邮件主题为“兴隆观测基地重课题申请 ...
  • 论文链接:击这里。 l该研究由2022年毕业于北京大学的伊利诺伊大学厄巴纳—香槟分校庄明阳博士和北京大学科维理天文与天体物理研究所何子山教授完成。北京大学为论文第一作者单位。
    对于拥有过小质量的黑洞,低于非活动星系关系的活动星系,它们的演化路径支持近期数值模拟中提出的一种情景:黑洞的增长最初落后于它的宿主星系,但是当恒星质量增大至气体稳定后情况发生反转。
    对于拥有过大质量的黑洞,高于非活动星系关系的活动星系,它们仍能继续增长恒星质量。这一结果与在早型活动星系中探测到活跃的恒星形成活动和丰富气体含量一致。
    )活动星系核反馈很难有效的影响低于黑洞质量—恒星质量关系的星系,同时动能模式(kinetic-mode)活动星系核反馈似乎不能抑制高于黑洞质量—恒星质量关系的星系长期的恒星质量增长 ...
    ” 该项工作得到了中国科技部国家重研发计划和国家自然科学基金的支持。国家天文科学数据中心为该研究提供数据与技术服务。
  • </p> <p> 9月5日晚,在中科院云南天文台及清华大学专业天文工作者的帮助下(1摩尔),利用云台丽江站2.4米望远镜抓住仅有的半小时晴天机会,及时拍摄了该候选体的光谱,分析并认证为Ia-91T-like ...
  • 这标志着中国虚拟天文台主节成功登陆阿里云。
    此次迁移到阿里云上的中国虚拟天文台主节功能主要包括平台门户、望远镜时间申请审批、公众超新星搜寻计划、公众频道等。此前郭守敬望远镜(LAMOST)的光谱巡天数据已先期实现上云。
  • A&C编委会页面节选 A&C期刊首发于2013年,为SCI正式收录期刊,2020年影响因子为1.927,已经成为国际天文信息学领域的核心期刊,在整个天体物理学领域的影响力也在持续快速增长 ...
    科学软件工程 计算基础设施 用于天体物理模拟的计算技术 可视化 数据管理、归档和虚拟天文台 数据统计、分析和挖掘 数据处理管道和自动化系统 语义、数据引用和数据保存 在线投稿请击 ...
  • 研究详情:击这里。
    银河系通过不断的吞食小质量的卫星星系来增长,科学家们称这种过程为星系并合。通过对银河系并合历史的研究,人们就可以知道银河系是如何形成和演化的。
    “这种吞食过程对银河系的增长非常重要,我们可以通过研究星流来确定银河系历史上是如何吃掉一个个卫星星系,并长成现在这个大质量星系的”。
  • 但21世纪以来天文观测数据量呈爆发式增长,对以千万计的星系样本进行形态分类是一个具有巨大挑战性的任务。
    随着天文观测技术的发展,我们能够观测到的星系数目也在飞速增长。这在为天文学家们提供了进一步研究星系的机会的同时,也对数据处理的效率提出了挑战。
    不需要您花费太多精力学习,也无需掌握专业知识,只需要您在可以网络通畅的环境下,并愿意付出一业余时间,就可以为这项重要的研究做出贡献。
    击主页导航栏 “个人中心”按钮登录系统,如第一次登录该系统需注册。 2.
    击主页导航栏的“分类”按钮,即可开始分类。每次开始分类前需击“击这里准备分类”按钮,随后按空格开始针对左侧图片的分类。
  • 随着国内外大型天文观测计划的不断涌现,天文数据量的快速增长,在天文研究中越来越广泛地应用并行处理程序。
    2017年,我台新采购的超级计算平台成功上线,系统包括了60个高性能计算节及8个众核计算节,合计计算核心为2180个。
  • 屈彩霞等人引入数据挖掘以及机器学习中相关子空间、支持向量机(SVM)、概念格等先进技术,通过分析LAMOST光谱中呈现的双峰发射线轮廓的特,设计了双峰轮廓的识别与评估技术框架(SVM-LATTICE) ...
    该技术框架在保证完备性的前提下,可以实现50%以上的双峰轮廓自动化识别,大幅减少了人眼检查工作;随着光谱数据量的增长,该技术框架具有比传统模板匹配方法更快的自动搜寻速度,同时可以为物理分析提供统计学依据 ...
    图1:双峰发射线轮廓光谱及对应测光图像伪彩图示例 图2:SVM-LATTICE框架示意图:图中每个结都部署一个分类器,对应一个特征空间集,结间构成一个双峰轮廓的置信Grid,纵向上较低的层次拥有较高的置信度 ...
    此外,层次间结体现了特征在统计上的泛化-例化关系。
  • 3月30日,中国虚拟天文台(China-VO)南京大学节正式上线,南京大学天文与空间科学学院的师生此后将能与中国科学院天文领域的师生一样方便快捷地使用中国虚拟天文台提供的海量数据资源和丰富的网络化服务 ...
    China-VO的六个节 中国虚拟天文台是由隶属于中国科学院的国家天文台、紫金山天文台、上海天文台、云南天文台、新疆天文台与众多合作单位共同打造的一个数据密集型的网络化科学研究和科普教育平台。
    中国虚拟天文台南京大学节由南京大学天文与空间科学学院出资建设,是China-VO的第六个节,也是中国科学院之外的首个节
    此前的五个节分别位于国家天文台(北京)、紫金山天文台(南京)、上海天文台(上海)、云南天文台(昆明)和新疆天文台(乌鲁木齐)。
  • 由国家天文台、天津大学、阿里云计算有限公司联合申请的“面向时域天文学的虚拟天文台核心能力建设与科学应用”项目获得天文联合基金重项目的资助。 “数据融合”是虚拟天文台的核心能力。
    中国虚拟天文台的资源节 阿里云的全球布局 ...
  • 包含5个子数据集,用户请到页面下方击各子数据集了解详细情况。
  • 涵盖了业余天文望远镜能看到的几乎所有有观测价值的月面地标,包括:651个主环形坑,348个卫星坑,19个月海,17个月湖,10个月湾,3个月沼,9个海角,93条月溪,8个月谷,43条山脉或山峰,36条山脊,8个峭壁,9个坑链、1个反照率异常和 ...
    13个飞船着陆地标。
  •  
我们使用cookies为您提供更好的体验。继续使用本网站,即表示您同意按照我们的Cookie 政策使用cookie。
接受