在过去三年中,国家天文台怀柔太阳观测基地和云南天文台抚仙湖观测基地的合作研究团队共同努力,以太阳观测卫星Hinode中的SP扫描光谱仪偏振数据仿真单波长滤光器磁像仪,采用两种有监督机器学习中神经网络模型成功建立了单波段 ...
“A Non-Linear Magnetic Field Calibration Method for Filter-Based Magnetographs by Multilayer Perceptron ...
这两篇姊妹篇分别采用点对点的多层感知机网络(MLP)技术和考虑相邻像元之间关系的卷积残差网络(ResNet)技术来从单波段stokes数据推断矢量磁场。
另外,填充因子对网络收敛性有显著影响,速度场的影响不显著。这证明了神经网络方法在单波段磁场定标中可以获得良好的结果。
图1 Hinode/SP活动区MLP预测结果比较。
结果表明(如图2所示):卷积ResNet的预测结果(中)与光谱反演结果(左)更为接近,如红色方框所示。测试集的预测结果与反演结果的决定系数在0.95以上,残差在50G左右。