Overview of the Instruments on the 10.4-m Gran Telescopio Canarias (GTC)

Based on the presentation given by Dr. Antonio L. Cabrera-Lavers at GTC and the GTC website (http://www.gtc.iac.es/instruments/instrumentation.php)

NATIONAL ASTRONOMICAL OBSERVATORIES CHINESE ACADEMY OF SCIENCES

2023年8月31日,山东威海

Canary Islands of Spain

Gran Telescopio Canarias (GTC)

- **GTC** telescope is an initiative of the Instituto de Astrofísica de Canarias (IAC)
- Funded by Spain (90%), México (5%), and the University of Florida (2.5-5%)
- **GRANTECAN** is the company that built, operates, maintains and upgrades GTC
- The GRANTECAN team consists of 78 support astronomers, engineers, technicians and administrative staff: 61 are based on La Palma, and 17 in Tenerife at the IAC headquarters

The telescope: general information

- GTC is located at 2267 m.a.m.s.l. at Observatorio del Roque de los Muchachos (ORM), La Palma, Spain.
- Construction started in 2000, first light in 2007; operations in 2009.
- 10.4m alt-az, Ritchey-Chrétien configuration
- Effective collecting area 73 m²
- Effective focal length 169.9 m → plate scale 1.21 arcsec mm⁻¹
- Total telescope moving weight 400 tons

Focus	Field of view Ø
Nasmyth	20 arcmin (1 m)
Cassegrain	15 arcmin
Folded Cass.	5 arcmin

The telescope: the main mirror (M1)

- 36(+6) hexagonal aluminium-coated Zerodur segments, each 1.9m wide, 8cm thick, of 6 different types
- Total weight = 17 tonnes
- Open/closed-loop active-optics control is provided by 108 positioners (piston and tip-tilt), 216 moment actuators, and 168 position sensors (capacitive edge-sensors) → 324 active degrees of freedom (72 for stacking, 36 for phasing, and 216 for change of segment figure)

Current instrumentation status of GTC

GTC focal stations

GTC instruments

Goals:

- 1) a good balance between general-purpose instruments covering a wide spectral range (e.g. OSIRIS/MEGARA + EMIR/MIRADAS) and instruments designed to provide specific capabilities which raise the scientific competitiveness of the GTC
- 2) Versatility provided by the number of available foci

Distinguished features:

- Tunable filters (OSIRIS)
- Fast imaging (HiPERCAM)
- High-resolution ultra-stable spectroscopy (CHORUS)
- MOS (OSIRIS, EMIR, MEGARA, MIRADAS)
- IFU at low to intermediate spectral resolution (MAAT, MEGARA, MIRADAS, FRIDA)

The combination of these features and the large collecting area make them unique instruments, and with higher sensitivity than other similar instruments

OSIRIS imager and spectrograph

http://www.gtc.iac.es/instruments/osiris/

OSIRIS imager and spectrograph

OSIRIS (Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy) is a common-user instrument since 2009 (on Nasmyth B), then moved to Cassegrain in 2022, upgraded to a new blue sensitive $4k \times 4k$ monolithic CCD in December 2022 (OSIRIS+).

https://www.gtc.iac.es/instruments/osiris/ https://www.gtc.iac.es/instruments/osiris+/osiris+.php

Spectral Range	0.36–1.00 μm
Detector	E2V CCD231-84-1-E74
Plate Scale	0.125 arcsec pix^{-1}
Field of view	$7.8 \times 7.8 \text{ arcmin}^2$
Imaging modes	Broad-band Medium band Tunable Filters Fast photometry
Spectroscopic modes	Long-Slit mask MOS
Spectral resolution	<i>R</i> ~300 to 2500

OSIRIS imager and spectrograph

ID	$\lambda_{c}(A)$	λ range (A)	D (A/pix)	Resolution	Peak Efficiency	Туре	Efficiency
R300B	4405	3600 -7200	4.96	360	70%	Grism	graph
R300R	6635	4800 - 10000	7.74	348	70%	Grism	graph
R500B	4745	3600 - 7200	3.54	537	68 %	Grism	graph
R500R	7165	4800 - 10000	4.88	587	67 %	Grism	graph
R1000B	5455	3630 - 7500	2.12	1018	65%	Grism	graph
R1000R	7430	5100 - 10000	2.62	1122	65%	Grism	graph
R2000B	4755	3950 - 5700	0.86	2165	87%	VPH	graph
R2500U	3975	3440 - 4610	0.62	2555	70%	VPH	graph
R2500V	5185	4500 - 6000	0.80	2515	80%	VPH	graph
R2500R	6560	5575 - 7685	1.04	2475	80%	VPH	graph
R2500I	8650	7330 - 10000	1.36	2503	80%	VPH	graph

OSIRIS upgrade (<u>OSIRIS+</u>)

https://www.gtc.iac.es/instruments/osiris+/osiris+.php

OSIRIS+ stands for the complete upgrade of OSIRIS instrument carried out along 2022, with the installation of OSIRIS at Cassegrain focal station first, and with the use of a new blue sensitive monolithic detector later. In this manner, from January 1st 2023 all the science observations with OSIRIS are obtained with this new OSIRIS+ configuration, with the need of adapting all the related information (data reduction, data format, etc..) accordingly.

New focal station (Cassegrain) installed in December 2020, operative in November 2021, and on sky commissioning completed in February 2022.

OSIRIS was installed at the new focal station (Cassegrain) in February 2022.

First science observations obtained on late April 2022 (without ICM), and <u>routinely observations</u> began in July 2022.

OSIRIS new monolithic CCD was installed and commissioned at the instrument in December 2022, <u>included in the scientific operations in</u> <u>late 2022B/2023A</u>

OSIRIS upgrade (new CCD)

Notable sensitivity gain at blue wavelengths (0.5–1.2 mag); also improvement in the red

ZPs	OSIRIS	OSIRIS+ *
u'	25.7	26.9
g'	28.85	29.3
r'	29.3	29.4
i'	28.85	29.0
Ζ'	28.15	28.3

* Converted to 'old' CCD gain (equivalent ZPs in ADU/s are 0.7 mags lower).

0.8

0.4

0.2

3500

Normalized Flux 0.6

NEW OSIRIS DETECTOR QE

1020

OSIRIS upgrade (new CCD)

Notable sensitivity gain at blue wavelengths (0.5–1.2 mags); also improvement in the red

ZPs	OSIRIS	OSIRIS+ *
u'	25.7	26.9
g'	28.85	29.3
r'	29.3	29.4
i'	28.85	29.0
Ζ'	28.15	28.3

* Converted to 'old' CCD gain (equivalent ZPs in ADU/s are 0.7 mags lower).

Filter	Surface mag limits (3σ; 10"×10" boxes) mag/arsec ² (1.5h on source)	Limiting magnitude (5σ; r=1") mag (1.5h on source)
Sloan <i>u</i>	30.3	26.0
Sloan g	31.5	27.3
Sloan <i>r</i>	31.0	26.6

MAAT@OSIRIS https://maat.iaa.es/

MAAT (Mirror-slicer Array for Astronomical Transients) is a mirror-slicer optical system that will allow the OSIRIS spectrograph the capability to perform Integral-Field Spectroscopy (IFS).

CCD pixel

In the Final Design Phase; first light by late-2024

Spectral Range	0.36–1.00 μm
Detector	E2V $4k \times 4k$
Plate Scale	$0.127'' \text{ pix}^{-1}$
Field of view	12" × 8.5"
Module	Integral Field Unit
Spatial Sampling	0.303" × 0.127"
Spectral resolution	<i>R</i> ~600–4100

MAAT simulation of two nebulae in NGC300:

CCD nixel

wavelength (nm)

EMIR NIR imager and multi-object spectrograph

Common-user instrument since 2017 at Nasmyth-A

http://www.gtc.iac.es/instruments/emir/emir.php

Spectral Range	0.9–2.5µm [1.1–2.5µm]	MOS mode		
Detector	HAWAI2 2048 × 2048	FoV	$4 \times 6.67 \operatorname{arcmin}^2(55 \operatorname{slitlets})$	
Spectral resolution	1000 (<i>YJ</i> , <i>HK</i>) 5000, 4250, 4000 (<i>JHK</i>)	Sensitivity	<u><i>K</i>~20.1 in 2h @ S/N=5 (continuum)</u>	
Spectral coverage	1 single window/exp.	Sensitivity	$1.4 \times 10^{-18} \text{ erg/s/cm}^2/\text{Å} @S/N=6 (lin)$	
Imaging modes	broad/narrow band	Imaging mode		
Plate Scale	$0.1945 \text{ arcsec pix}^{-1}$	FoV	$6.7 \times 6.7 \text{ arcmin}^2$	
Image quality	$\theta_{80} < 0.3$ arcsec	Sensitivity $\frac{K \sim 22.0 \text{ in 1h, for S/N=3 \& 0.6 arc}}{\text{aperture}}$		
Limiting magnitudes	$Y=26.0, J=25.0, H=23.5, K=22.0 \text{ for S/N}=3 (t_{exp} = 1 \text{ h})$			

EMIR NIR imager and multi-object spectrograph

MEGARA optical medium-resolution multi-object spectrograph

Spectral range	0.365–1.000 μm
Detector	4k × 4k (15µm pixel ⁻¹) E2V CCD231-84-1-E74
IFU field of view	$12.5 \times 11.3 \text{ arcsec}^2$
IFU spaxel size	0.62 arcsec
MOS mode	92 × 7-fiber mini-IFUs *
MOS field of view	$3.5 \times 3.5 \operatorname{arcmin}^2$
Spectral resolution	<i>R</i> ~6000–20000
No. of spectra	650

* Currently not available

VPH ID	Setup	R _{FWHM}	λ ₁ -λ ₂	λ _C	Δλ(@λ _C)	lin res
			(Å)	(Å)	(Å)	(Å/pix)
VPH405-LR	LR-U	5750	3654.32-4391.88	4025.90	0.700	0.176
VPH480-LR	LR-B	5000	4332.05-5199.96	4785.32	0.957	0.207
VPH570-LR	LR-V	5850	5143.74-6168.19	5687.63	0.971	0.244
VPH675-LR	LR-R	5900	6096.54-7303.21	6729.61	1.141	0.287
VPH799-LR	LR-I	5750	7224.11-8640.37	7976.31	1.387	0.337
VPH890-LR	LR-Z	5800	8042.74-9634.92	8873.16	1.530	0.379
VPH410-MR	MR-U	13100	3919.81-4282.17	4102.87	0.313	0.086
VPH443-MR	MR-UB	13050	4226.38-4625.79	4429.44	0.339	0.095
VPH481-MR	MR-B	13200	4585.66-5025.07	4809.46	0.364	0.105
VPH521-MR	MR-G	12000	4963.22-5445.00	5208.79	0.434	0.115
VPH567-MR	MR-V	12600	5413.11-5923.90	5664.96	0.450	0.122
VPH617-MR	MR-VR	12100	5894.23-6448.26	6165.79	0.510	0.132
VPH656-MR	MR-R	12150	6243.10-6865.26	6560.33	0.540	0.148
VPH712-MR	MR-RI	12200	6764.58-7440.85	7109.81	0.583	0.161
VPH777-MR	MR-I	8600	7386.53-8127.95	7766.14	0.903	0.177
VPH926-MR	MR-Z	11600	8810.52-9698.97	9274.84	0.800	0.212
VPH665-HR	HR-R	20050	6405.61-6797.14	6602.59	0.329	0.093
VPH863-HR	HR-I	20500	8380.20-8882.38	8626.01	0.421	0.120

http://www.gtc.iac.es/instruments/megara/megara.php

MEGARA optical medium-resolution multi-object spectrograph

Example: GTC/MEGARA IFU observations of Galactic PN HuBi 1

A quintuple-beam imager that saw first light as a Visitor Instrument in Feb. 2018

Spectral Range	0.36–1.00 μm
Detector	5 × E2V 47-20 frame- transfer devices
Detector format	4k × 4k; 15 μ m pixel ⁻¹
Plate Scale	$0.081 \text{ arcsec pix}^{-1}$
Field of view	$2.8 \times 1.4 \operatorname{arcmin}^2$
Imaging modes	Fast photometry with broad band filters (u' g' r' i' z') simultaneously

https://www.gtc.iac.es/instruments/hipercam/hipercam.php

A quintuple-beam imager that saw first light as a Visitor Instrument in Feb. 2018

Spectral Range	0.36–1.00 μm
Detector	5 × E2V 47-20 frame- transfer devices
Detector format	4k × 4k; 15 μ m pixel ⁻¹
Plate Scale	$0.081 \text{ arcsec pix}^{-1}$
Field of view	$2.8 \times 1.4 \operatorname{arcmin}^2$
Imaging modes	Fast photometry with broad band filters (u' g' r' i' z') simultaneously

http://www.vikdhillon.staff.shef.ac.uk/hipercam/

A quintuple-beam imager that saw first light as a Visitor Instrument in Feb. 2018

Spectral Range	0.36–1.00 μm
Detector	5 × E2V 47-20 frame- transfer devices
Detector format	4k × 4k; 15 μ m pixel ⁻¹
Plate Scale	0.081 arcsec pix ⁻¹
Field of view	$2.8 \times 1.4 \operatorname{arcmin}^2$
Imaging modes	Fast photometry with broad band filters $u' g' r' i' z'$ simultaneously

00 m : 03 s

- FCass G rotator for HiPERCAM installed and tested in April 17-23 2023, as well as a custom cabinet for the HiPERCAM electronics that will fit in the (tight) space envelope.
- COMPO collar (including autoguider) also installed in 17-23 April 2023.
- HiPERCAM instrument finally mounted in April 20, 2023.
- First on-sky tests with HiPERCAM completed successfully in May 14, 2023.
- On-sky tests for COMPO/HiPERCAM commissioning completed in May 24-26, 2023.
- HiPERCAM was offered on June 12 in a special call for proposals for S23B, to observe from July 2023 to February 2024.

MIRADAS NIR multi-object echelle spectrograph

Common-user instrument (folded-Cassegrain focal station E), in operation in late 2023 http://www.gtc.iac.es/instruments/miradas/miradas.php https://astro.ufl.edu/miradas-consortium/

Parameter	Value	Comment
Spectral Range	1–2.5 μm	
Target field of view	5 arcmin diameter	Each probe arm patrols a 2D workspace within a circular field
Individual target field of view	3.7"×1.2"	Slit slicers: 3 slices of $3.7'' \times 0.4''$ each
Spectroscopic mode	MOS up to 12 deployable probe arms	
Detector focal plane	4096×2048 pixels	Mosaic of 2Kx2K HAWAII-2RG
Spectral resolution	<i>R</i> ~20000	
Continuum sensitivity	J=18.0 mag H=17.7 mag K=16.7 mag	S/N=10 for 1-hour on-source exposure
Emission line sensitivity	$5x10^{-18} \text{ ergs/cm}^{2/\text{s}}$ (point) $8x10^{-18} \text{ ergs/cm}^{2/\text{s}}$ (resolved)	S/N=10 for 1-hour on- source exposure; resolved source assumes 1 square arcsecond detect cell
Spetropolarimetry		WP in single-object mode

MIRADAS NIR multi-object echelle spectrograph

Common-user instrument (folded-Cassegrain focal station E), in operation in late 2023

Offered Multiplex Configurations (MXS)

Configuration	MXS Targets	Instantaneous Bandpass
SO-Short Mode	1	1.04–1.78 μm
SO-Long Mode	1	1.34–2.50 μm
Maximum- multiplex Mode (MMX)	12	Any SINGLE order from the Table below

MIRADAS Echelle Orders

Order	Wavelength (µm)	Band	Order	Wavelength (µm)	Band
14	2.3700-2.5000	Κ	24	1.4132-1.4718	Atm.
15	2.2220-2.3820	Κ	25	1.3555-1.4095	Atm.
16	2.0885-2.2245	Κ	26	1.3107-1.3493	J
17	1.9360-2.0860	Κ	27	1.2602-1.2988	J
18	1.8700-1.9700	Atm.	28	1.2170-1.2531	J
19	1.7869-1.8534	Н	29	1.1750-1.2100	J
20	1.6943-1.7608	Н	30	1.1365-1.1703	Atm.
21	1.6144-1.6809	Н	31	1.1009-1.1291	J-Io
22	1.5409-1.6044	Н	32	1.0664-1.0937	J-Io
23	1.4746-1.5355	Н	33	1.0343-1.0607	J-Io
			34	1.0048-1.0303	J-Io

GTCAO + <u>FRIDA</u> NIR imager and IFU spectrograph

FRIDA (inFRared Imager and Dissector for Adaptive optics) is an Integral Field Spectrograph with imaging capability, making use of the GTC Adaptive Optics (GTCAO) system. Natural guide-star AO is being developed at IAC; FRIDA is being developed at UNAM

Both expected in 2023–2024

G	TCAO			FRIDA
Spectral range	0.9–2.5 μm	Spectral range		0.9–2.5 μm
Correction	Shack-Hartmann	Detector		HAWAII2RG 2048×2048
	wfs in visible light		Mode	diffraction limited broad/narrow-
Corrected FOV	1.5 arcmin			band
On arris SP	>0.65 at 2.2 um	Imaging	FOV	
On-axis SK	-0.05 at 2.2 μm		+	$20'' \times 20'' (0.01'' \text{ pixel}^{-1})$
			nlate	$40'' \times 40'' (0.02'' \& 0.04'' \text{ pixel}^{-1})$
			scale	
		Spectroscopic mode (IFU) Spectral resolution		0.60"×0.64", 1.20"×1.28" &
				2.40"×2.56"
				1000 (ZJ, HK), 4000 (Z,J,H,K), 25000–32000 (H,K)

https://www.gtc.iac.es/instruments/frida/frida.php

GTC instruments (2009–2027)

Thank you!

NATIONAL ASTRONOMICAL OBSERVATORIES CHINESE ACADEMY OF SCIENCES

2023年8月31日,山东威海